MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep joint demosaicking and denoising

Author(s)
Gharbi, Michaël; Chaurasia, Gaurav; Paris, Sylvain; Durand, Frédo
Thumbnail
DownloadAccepted version (55.92Mb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2016 ACM. SA'16 Technical Papers,, December 05-08, 2016, Macao Demosaicking and denoising are the key first stages of the digital imaging pipeline but they are also a severely ill-posed problem that infers three color values per pixel from a single noisy measurement. Earlier methods rely on hand-crafted filters or priors and still exhibit disturbing visual artifacts in hard cases such as moiré or thin edges. We introduce a new data-driven approach for these challenges: we train a deep neural network on a large corpus of images instead of using hand-tuned filters. While deep learning has shown great success, its naive application using existing training datasets does not give satisfactory results for our problem because these datasets lack hard cases. To create a better training set, we present metrics to identify difficult patches and techniques for mining community photographs for such patches. Our experiments show that this network and training procedure outperform state-of-the-art both on noisy and noise-free data. Furthermore, our algorithm is an order of magnitude faster than the previous best performing techniques.
Date issued
2016
URI
https://hdl.handle.net/1721.1/134672
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
ACM Transactions on Graphics
Publisher
Association for Computing Machinery (ACM)
Citation
Gharbi, Michael, et al. "Deep Joint Demosaicking and Denoising." Acm Transactions on Graphics 35 6 (2016): 12.
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.