MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep vs. shallow networks: An approximation theory perspective

Author(s)
Mhaskar, HN; Poggio, T
Thumbnail
DownloadAccepted version (960.2Kb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2016 World Scientific Publishing Company. The paper briefly reviews several recent results on hierarchical architectures for learning from examples, that may formally explain the conditions under which Deep Convolutional Neural Networks perform much better in function approximation problems than shallow, one-hidden layer architectures. The paper announces new results for a non-smooth activation function - the ReLU function - used in present-day neural networks, as well as for the Gaussian networks. We propose a new definition of relative dimension to encapsulate different notions of sparsity of a function class that can possibly be exploited by deep networks but not by shallow ones to drastically reduce the complexity required for approximation and learning.
Date issued
2016
URI
https://hdl.handle.net/1721.1/134674
Department
Center for Brains, Minds, and Machines; McGovern Institute for Brain Research at MIT
Journal
Analysis and Applications
Publisher
World Scientific Pub Co Pte Lt
Citation
Mhaskar, H. N., and T. Poggio. "Deep Vs. Shallow Networks: An Approximation Theory Perspective." Analysis and Applications 14 6 (2016): 829-48.
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.