MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Linewidth of the laser optical frequency comb with arbitrary temporal profile

Author(s)
Khurgin, Jacob B; Henry, Nathan; Burghoff, David; Hu, Qing
Thumbnail
DownloadAccepted version (346.0Kb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2018 Author(s). For many applications, optical frequency combs (OFCs) require a high degree of temporal coherence (narrow linewidth). Commonly, OFCs are generated in nonlinear media from a monochromatic narrow linewidth laser source or from a mode-locked laser pulse, but in all the important mid-infrared (MIR) and terahertz (THz) regions of the spectrum, OFCs can be generated intrinsically by free-running quantum cascade lasers (QCLs) with high efficiency. These combs do not look like conventional OFCs as the phases of each mode are different, and in the temporal domain, OFCs are a seemingly random combination of amplitude- and phase-modulated signals rather than a short pulse. Despite this "pseudo-randomness," the experimental evidence suggests that the linewidth of a QCL OFC is just as narrow as that of a QCL operating in a single mode. While universally acknowledged, this observation is seemingly not fully understood. In this work, we explicate this fact by deriving the expression for the Schawlow-Townes linewidth of QCL OFCs and offer a transparent physical interpretation based on the orthogonality of laser modes, indicating that despite their very different temporal profiles, MIR and THz QCL OFCs are just as good for most applications as any other OFCs.
Date issued
2018
URI
https://hdl.handle.net/1721.1/134726
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
Applied Physics Letters
Publisher
AIP Publishing

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.