MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Microscopic theory of capillary pressure hysteresis based on pore-space accessivity and radius-resolved saturation

Author(s)
Gu, Zongyu; Bazant, Martin Z
Thumbnail
DownloadSubmitted version (5.618Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
© 2018 Elsevier Ltd Continuum models of porous media use macroscopic parameters and state variables to capture essential features of pore-scale physics. We propose a macroscopic property “accessivity” (α) to characterize the network connectivity of different sized pores in a porous medium, and macroscopic state descriptors “radius-resolved saturations” (ψw(F),ψn(F)) to characterize the distribution of fluid phases within. Small accessivity (α→0) implies serial connections between different sized pores, while large accessivity (α→1) corresponds to more parallel arrangements, as the classical capillary bundle model implicitly assumes. Based on these concepts, we develop a statistical theory for quasistatic immiscible drainage-imbibition in arbitrary cycles, and arrive at simple algebraic formulae for updating ψnF that naturally capture capillary pressure hysteresis, with α controlling the amount of hysteresis. These concepts may be used to interpret hysteretic data, upscale pore-scale observations, and formulate new constitutive laws by providing a simple conceptual framework for quantifying connectivity effects, and may have broader utility in continuum modeling of transport, reactions, and phase transformations in porous media.
Date issued
2019
URI
https://hdl.handle.net/1721.1/134729
Department
Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of Mathematics
Journal
Chemical Engineering Science
Publisher
Elsevier BV

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.