dc.contributor.author | DU, XIUMIN | |
dc.contributor.author | GUTH, LARRY | |
dc.contributor.author | LI, XIAOCHUN | |
dc.contributor.author | ZHANG, RUIXIANG | |
dc.date.accessioned | 2021-10-27T20:08:54Z | |
dc.date.available | 2021-10-27T20:08:54Z | |
dc.date.issued | 2018 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/134734 | |
dc.description.abstract | <jats:p>We obtain partial improvement toward the pointwise convergence problem of Schrödinger solutions, in the general setting of fractal measure. In particular, we show that, for <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S2050509418000117_inline1" /><jats:tex-math>$n\geqslant 3$</jats:tex-math></jats:alternatives></jats:inline-formula>, <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S2050509418000117_inline2" /><jats:tex-math>$\lim _{t\rightarrow 0}e^{it\unicode[STIX]{x1D6E5}}f(x)$</jats:tex-math></jats:alternatives></jats:inline-formula><jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S2050509418000117_inline3" /><jats:tex-math>$=f(x)$</jats:tex-math></jats:alternatives></jats:inline-formula> almost everywhere with respect to Lebesgue measure for all <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S2050509418000117_inline4" /><jats:tex-math>$f\in H^{s}(\mathbb{R}^{n})$</jats:tex-math></jats:alternatives></jats:inline-formula> provided that <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S2050509418000117_inline5" /><jats:tex-math>$s>(n+1)/2(n+2)$</jats:tex-math></jats:alternatives></jats:inline-formula>. The proof uses linear refined Strichartz estimates. We also prove a multilinear refined Strichartz using decoupling and multilinear Kakeya.</jats:p> | |
dc.language.iso | en | |
dc.publisher | Cambridge University Press (CUP) | |
dc.relation.isversionof | 10.1017/FMS.2018.11 | |
dc.rights | Creative Commons Attribution-NonCommercial-NoDerivs License | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | Cambridge University Press | |
dc.title | POINTWISE CONVERGENCE OF SCHRÖDINGER SOLUTIONS AND MULTILINEAR REFINED STRICHARTZ ESTIMATES | |
dc.type | Article | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |
dc.relation.journal | Forum of Mathematics, Sigma | |
dc.eprint.version | Final published version | |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
eprint.status | http://purl.org/eprint/status/PeerReviewed | |
dc.date.updated | 2019-11-13T16:38:13Z | |
dspace.orderedauthors | DU, X; GUTH, L; LI, X; ZHANG, R | |
dspace.date.submission | 2019-11-13T16:38:16Z | |
mit.journal.volume | 6 | |
mit.metadata.status | Authority Work and Publication Information Needed | |