MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A distributed electrical model for superconducting nanowire single photon detectors

Author(s)
Zhao, Qing-Yuan; Santavicca, Daniel F; Zhu, Di; Noble, Brian; Berggren, Karl K
Thumbnail
DownloadSubmitted version (591.2Kb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2018 Author(s). To analyze the switching dynamics and output performance of a superconducting nanowire single photon detector (SNSPD), the nanowire is usually modelled as an inductor in series with a time-varying resistor induced by the absorption of a photon. Our recent experimental results show that, due to the effect of kinetic inductance, for a SNSPD made of a nanowire of sufficient length, its geometrical length can be comparable to or even longer than the effective wavelength of frequencies contained in the output pulse. In other words, a superconducting nanowire can behave as a distributed transmission line so that the readout pulse depends on the photon detection location and the transmission line properties of the nanowire. Here, we develop a distributed model for a superconducting nanowire and apply it to simulate the output performance of a long nanowire designed into a coplanar waveguide. We compare this coplanar waveguide geometry to a conventional meander nanowire geometry. The simulation results agree well with our experimental observations. With this distributed model, we discuss the importance of microwave design of a nanowire and how impedance matching can affect the output pulse shape. We also discuss how the distributed model affects the growth and decay of the photon-triggered resistive hotspot.
Date issued
2018
URI
https://hdl.handle.net/1721.1/134735
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Applied Physics Letters
Publisher
AIP Publishing

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.