MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

High hole mobility in strained In 0.25 Ga 0.75 Sb quantum well with high quality Al 0.95 Ga 0.05 Sb buffer layer

Author(s)
Roh, IlPyo; Kim, SangHyeon; Geum, Dae-Myeong; Lu, Wenjie; Song, YunHeub; del Alamo, Jesús A; Song, JinDong; ... Show more Show less
Thumbnail
DownloadPublished version (3.393Mb)
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
© 2018 Author(s). We have demonstrated high hole mobility in strained In0.25Ga0.75Sb quantum well (QW) structure with a high quality Al0.95Ga0.05Sb buffer layer for future single channel complementary metal-oxide-semiconductor circuits. The Al0.95Ga0.05Sb buffer layer is important to achieve low substrate leakage and guarantee good channel material quality and high hole mobility. We grew buffer layers with various Sb effective flux conditions using molecular beam epitaxy to obtain high crystal quality and proper electrical properties. We systematically evaluated the relationship between the crystal quality and electrical properties using X-ray diffraction, atomic force microscope, Raman, and the Hall effect measurement system. Then, on this optimized buffer layer, we grew the In0.2Al0.8Sb/In0.25Ga0.75Sb/linear-graded Al0.8Ga0.2Sb QW structure to obtain high hole mobility with compressive strain. Moreover, the compressive strain and hole mobility were measured by Raman and Hall effect measurement system. The results show a compressive strain value of 1.1% in In0.25Ga0.75Sb QW channel, which is very close to the theoretical value of 1.1% from lattice mismatch, exhibiting the highest hole mobility of 1170 cm2/V s among reported mobility in In0.25Ga0.75Sb QW. Furthermore, it was able to be fabricated as p-type Fin-FET and shown the excellent electrical characteristics with low Smin and high gm.
Date issued
2018
URI
https://hdl.handle.net/1721.1/134741
Department
Massachusetts Institute of Technology. Microsystems Technology Laboratories
Journal
Applied Physics Letters
Publisher
AIP Publishing

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.