MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Magneto-ionic control of magnetism using a solid-state proton pump

Author(s)
Tan, Aik Jun; Huang, Mantao; Avci, Can Onur; Büttner, Felix; Mann, Maxwell; Hu, Wen; Mazzoli, Claudio; Wilkins, Stuart; Tuller, Harry L; Beach, Geoffrey SD; ... Show more Show less
Thumbnail
DownloadAccepted version (1.836Mb)
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
© 2018, The Author(s), under exclusive licence to Springer Nature Limited. Voltage-gated ion transport as a means of manipulating magnetism electrically could enable ultralow-power memory, logic and sensor technologies. Earlier work made use of electric-field-driven O 2− displacement to modulate magnetism in thin films by controlling interfacial or bulk oxidation states. However, elevated temperatures are required and chemical and structural changes lead to irreversibility and device degradation. Here we show reversible and non-destructive toggling of magnetic anisotropy at room temperature using a small gate voltage through H + pumping in all-solid-state heterostructures. We achieve 90° magnetization switching by H + insertion at a Co/GdO x interface, with no degradation in magnetic properties after >2,000 cycles. We then demonstrate reversible anisotropy gating by hydrogen loading in Pd/Co/Pd heterostructures, making metal–metal interfaces susceptible to voltage control. The hydrogen storage metals Pd and Pt are high spin–orbit coupling materials commonly used to generate perpendicular magnetic anisotropy, Dzyaloshinskii–Moriya interaction, and spin–orbit torques in ferromagnet/heavy-metal heterostructures. Thus, our work provides a platform for voltage-controlled spin–orbitronics.
Date issued
2019
URI
https://hdl.handle.net/1721.1/134755
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Nature Materials
Publisher
Springer Science and Business Media LLC

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.