MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

NICER Discovers Spectral Lines during Photospheric Radius Expansion Bursts from 4U 1820−30: Evidence for Burst-driven Winds

Author(s)
Strohmayer, TE; Altamirano, D; Arzoumanian, Z; Bult, PM; Chakrabarty, D; Chenevez, J; Fabian, AC; Gendreau, KC; Guillot, S; in ’t Zand, JJM; Jaisawal, GK; Keek, L; Kosec, P; Ludlam, RM; Mahmoodifar, S; Malacaria, Christian; Miller, JM; ... Show more Show less
Thumbnail
DownloadPublished version (686.2Kb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
© 2019. The American Astronomical Society. All rights reserved. We report the discovery with the Neutron Star Interior Composition Explorer (NICER) of narrow emission and absorption lines during photospheric radius expansion (PRE) X-ray bursts from the ultracompact binary 4U 1820-30. NICER observed 4U 1820-30 in 2017 August during a low-flux, hard spectral state, accumulating about 60 ks of exposure. Five thermonuclear X-ray bursts were detected, of which four showed clear signs of PRE. We extracted spectra during the PRE phases and fit each to a model that includes a Comptonized component to describe the accretion-driven emission, and a blackbody for the burst thermal radiation. The temperature and spherical emitting radius of the fitted blackbody are used to assess the strength of PRE in each burst. The two strongest PRE bursts (burst pair 1) had blackbody temperatures of ≈0.6 keV and emitting radii of ≈100 km (at a distance of 8.4 kpc). The other two bursts (burst pair 2) had higher temperatures (≈0.67 keV) and smaller radii (≈75 km). All of the PRE bursts show evidence of narrow line emission near 1 keV. By coadding the PRE phase spectra of burst pairs 1 and, separately, 2, we find, in both coadded spectra, significant, narrow, spectral features near 1.0 (emission), 1.7, and 3.0 keV (both in absorption). Remarkably, all the fitted line centroids in the coadded spectrum of burst pair 1 appear systematically blueshifted by a factor of 1.046 ±0.006 compared to the centroids of pair 2, strongly indicative of a gravitational shift, a wind-induced blueshift, or more likely some combination of both effects. The observed shifts are consistent with this scenario in that the stronger PRE bursts in pair 1 reach larger photospheric radii, and thus have weaker gravitational redshifts, and they generate faster outflows, yielding higher blueshifts. We discuss possible elemental identifications for the observed features in the context of recent burst-driven wind models.
Date issued
2019
URI
https://hdl.handle.net/1721.1/134771
Department
MIT Kavli Institute for Astrophysics and Space Research
Journal
Astrophysical Journal Letters
Publisher
American Astronomical Society

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.