MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Laser-sculptured ultrathin transition metal carbide layers for energy storage and energy harvesting applications

Author(s)
Zang, Xining; Jian, Cuiying; Zhu, Taishan; Fan, Zheng; Wang, Wanlin; Wei, Minsong; Li, Buxuan; Follmar Diaz, Mateo; Ashby, Paul; Lu, Zhengmao; Chu, Yao; Wang, Zizhao; Ding, Xinrui; Xie, Yingxi; Chen, Juhong; Hohman, J Nathan; Sanghadasa, Mohan; Grossman, Jeffrey C; Lin, Liwei; ... Show more Show less
Thumbnail
DownloadPublished version (1.633Mb)
Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
© 2019, The Author(s). Ultrathin transition metal carbides with high capacity, high surface area, and high conductivity are a promising family of materials for applications from energy storage to catalysis. However, large-scale, cost-effective, and precursor-free methods to prepare ultrathin carbides are lacking. Here, we demonstrate a direct pattern method to manufacture ultrathin carbides (MoCx, WCx, and CoCx) on versatile substrates using a CO2 laser. The laser-sculptured polycrystalline carbides (macroporous, ~10–20 nm wall thickness, ~10 nm crystallinity) show high energy storage capability, hierarchical porous structure, and higher thermal resilience than MXenes and other laser-ablated carbon materials. A flexible supercapacitor made of MoCx demonstrates a wide temperature range (−50 to 300 °C). Furthermore, the sculptured microstructures endow the carbide network with enhanced visible light absorption, providing high solar energy harvesting efficiency (~72 %) for steam generation. The laser-based, scalable, resilient, and low-cost manufacturing process presents an approach for construction of carbides and their subsequent applications.
Date issued
2019
URI
https://hdl.handle.net/1721.1/134797
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Nature Communications
Publisher
Springer Science and Business Media LLC

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.