MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimal transport-based polar interpolation of directional fields

Author(s)
Solomon, Justin; Vaxman, Amir
Thumbnail
DownloadAccepted version (46.73Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM. We propose an algorithm that interpolates between vector and frame fields on triangulated surfaces, designed to complement field design methods in geometry processing and simulation. Our algorithm is based on a polar construction, leveraging a conservation law from the Hopf-Poincaré theorem to match singular points using ideas from optimal transport; the remaining detail of the field is interpolated using straightforward machinery. Our model is designed with topology in mind, sliding singular points along the surface rather than having them appear and disappear, and it caters to all surface topologies, including boundary and generator loops.
Date issued
2019
URI
https://hdl.handle.net/1721.1/134835
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
ACM Transactions on Graphics
Publisher
Association for Computing Machinery (ACM)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.