MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dynamics-aware numerical coarsening for fabrication design

Author(s)
Chen, Desai; Levin, David IW; Matusik, Wojciech; Kaufman, Danny M
Thumbnail
DownloadAccepted version (14.60Mb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2017 Copyright held by the owner/author(s). The realistic simulation of highly-dynamic elastic objects is important for a broad range of applications in computer graphics, engineering and computational fabrication. However, whether simulating flipping toys, jumping robots, prosthetics or quickly moving creatures, performing such simulations in the presence of contact, impact and friction is both time consuming and inaccurate. In this paper we present Dynamics-Aware Coarsening (DAC) and the Boundary Balanced Impact (BBI) model which allow for the accurate simulation of dynamic, elastic objects undergoing both large scale deformation and frictional contact, at rates up to 79 times faster than state-of-the-art methods. DAC and BBI produce simulations that are accurate and fast enough to be used (for the first time) for the computational design of 3D-printable compliant dynamic mechanisms. Thus we demonstrate the efficacy of DAC and BBI by designing and fabricating mechanisms which flip, throw and jump over and onto obstacles as requested.
Date issued
2017
URI
https://hdl.handle.net/1721.1/134841
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
ACM Transactions on Graphics
Publisher
Association for Computing Machinery (ACM)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.