MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Chip-Scale Molecular Clock

Author(s)
Wang, Cheng; Yi, Xiang; Mawdsley, James; Kim, Mina; Hu, Zhi; Zhang, Yaqing; Perkins, Bradford; Han, Ruonan; ... Show more Show less
Thumbnail
DownloadAccepted version (5.375Mb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 1966-2012 IEEE. An ultra-stable time-keeping device is presented, which locks its output clock frequency to the rotational-mode transition of polar gaseous molecules. Based on a high-precision spectrometer in the sub-terahertz (THz) range, our new clocking scheme realizes not only fully electronic operation but also implementations using mainstream CMOS technology. Meanwhile, the small wavelength of probing wave and high absorption intensity of our adopted molecules (carbonyl sulfide, 16 O 12 C 32 S) also enable miniaturization of the gas cell. All these result in an 'atomic-clock-grade' frequency reference with small size, power, and cost. This paper provides the architectural and chip-design details of the first proof-of-concept molecular clock using a 65-nm CMOS bulk technology. Using a 231.061-GHz phase-locked loop (PLL) with frequency-shift keying (FSK) modulation and a sub-THz FET detector with integrated lock-in function, the chip probes the accurate transition frequency of carbonyl sulfide (OCS) gas inside a single-mode waveguide, and accordingly adjusts the 80-MHz output of a crystal oscillator. The clock consumes only 66 mW of dc power and has a measured Allan deviation of 3.8 × 10 10 at an averaging time of τ =1000s.
Date issued
2019
URI
https://hdl.handle.net/1721.1/134898
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Chemistry; Lincoln Laboratory
Journal
IEEE Journal of Solid-State Circuits
Publisher
Institute of Electrical and Electronics Engineers (IEEE)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.