MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling and characterization of cohesion in fine metal powders with a focus on additive manufacturing process simulations

Author(s)
Meier, C; Weissbach, R; Weinberg, J; Wall, WA; John Hart, A
Thumbnail
DownloadAccepted version (4.518Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
© 2018 Elsevier B.V. The cohesive interactions between fine metal powder particles crucially influence their flow behavior, which is important to many powder-based manufacturing processes including metal additive manufacturing (AM). The present work proposes a novel modeling and characterization approach for micron-scale metal powders, with a focus on characteristics of importance to powder bed AM. The model is based on the discrete element method (DEM), and the considered particle-to-particle and particle-to-wall interactions involve frictional contact, rolling resistance and cohesive forces. Special emphasis lies on the modeling of cohesion. The proposed adhesion force law is defined by the pull-off force resulting from the surface energy of powder particles in combination with a van-der-Waals force curve regularization. The model is applied to predict the angle of repose (AOR) of exemplary spherical Ti-6Al-4 V powders, and the surface energy value underlying the adhesion force law is calibrated by fitting the corresponding angle of repose values from numerical and experimental funnel tests. To the best of the authors’ knowledge, this is the first work providing an experimental estimate for the effective surface energy of the considered class of metal powders. By this approach, an effective surface energy of 0.1mJ/m2 is found for the investigated Ti-6Al-4 V powder. This value is considerably lower than typical experimental values for flat metal contact surfaces, which range from 30 − 50mJ/m2. Thus, factors such as surface roughness, surface chemistry and potential surface oxidation have crucial influence on bulk power behavior. Moreover, the present study demonstrates that a neglect of the related cohesive forces leads to a drastical underestimation of the AOR and, consequently, to an insufficient representation of the bulk powder behavior.
Date issued
2019-02-01
URI
https://hdl.handle.net/1721.1/134902
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering; Lincoln Laboratory
Journal
Powder Technology
Publisher
Elsevier BV

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.