MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Thermal conductivity in self-assembled CoFe 2 O 4 /BiFeO 3 vertical nanocomposite films

Author(s)
Zhang, Chen; Huberman, Samuel C; Ning, Shuai; Pelliciari, Jonathan; Duncan, Ryan A; Liao, Bolin; Ojha, Shuchi; Freeland, John W; Nelson, Keith A; Comin, Riccardo; Chen, Gang; Ross, Caroline A; ... Show more Show less
Thumbnail
DownloadPublished version (1.046Mb)
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
© 2018 Author(s). The thermal conductivity of self-assembled nanocomposite oxide films consisting of cobalt ferrite (CFO) spinel pillars grown within a single-crystal bismuth ferrite (BFO) perovskite matrix is described as a function of the volume fraction of the spinel. Single phase BFO and CFO had cross-plane thermal conductivities of 1.32 W m-1 K-1 and 3.94 W m-1 K-1, respectively, and the thermal conductivity of the nanocomposites increased with the CFO volume fraction within this range. A small increase (∼5%) in thermal conductivity for the pure CFO phase in the AC-demagnetized state was observed, suggesting possible magnon contributions. Steady state gray-medium based variance-reduced Monte Carlo simulations show consistent trends with experimental data on the dependence of thermal conductivity with the CFO volume fraction.
Date issued
2018
URI
https://hdl.handle.net/1721.1/134914
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering; Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Department of Physics; Massachusetts Institute of Technology. Department of Chemistry
Journal
Applied Physics Letters
Publisher
AIP Publishing

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.