MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An LP empirical quadrature procedure for reduced basis treatment of parametrized nonlinear PDEs

Author(s)
Yano, Masayuki; Patera, Anthony T
Thumbnail
DownloadSubmitted version (532.0Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
© 2018 Elsevier B.V. We present a model reduction formulation for parametrized nonlinear partial differential equations (PDEs). Our approach builds on two ingredients: reduced basis (RB) spaces which provide rapidly convergent approximations to the parametric manifold; sparse empirical quadrature rules which provide rapid evaluation of the nonlinear residual and output forms associated with the RB spaces. We identify both the RB spaces and the sparse quadrature rules in the offline stage through a greedy training procedure over the parameter domain; the procedure requires the dual norm of the finite element (FE) residual at many training points in the parameter domain, but only very few FE solutions—the snapshots retained in the RB space. The quadrature rules are identified by a linear program (LP) empirical quadrature procedure (EQP) which (i) admits efficient solution by a simplex method, and (ii) directly controls the solution error induced by the approximate quadrature. We demonstrate the formulation for a parametrized neo-Hookean beam: the dimension of the approximation space and the number of quadrature points are both reduced by two orders of magnitude relative to FE treatment, with commensurate savings in computational cost.
Date issued
2019
URI
https://hdl.handle.net/1721.1/134951
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Computer Methods in Applied Mechanics and Engineering
Publisher
Elsevier BV

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.