MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stochastic time-optimal path-planning in uncertain, strong, and dynamic flows

Author(s)
Subramani, Deepak N; Wei, Quantum J; Lermusiaux, Pierre FJ
Thumbnail
DownloadSubmitted version (13.47Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
© 2018 Elsevier B.V. Accounting for uncertainty in optimal path planning is essential for many applications. We present and apply stochastic level-set partial differential equations that govern the stochastic time-optimal reachability fronts and time-optimal paths for vehicles navigating in uncertain, strong, and dynamic flow fields. To solve these equations efficiently, we obtain and employ their dynamically orthogonal reduced-order projections, maintaining accuracy while achieving several orders of magnitude in computational speed-up when compared to classic Monte Carlo methods. We utilize the new equations to complete stochastic reachability and time-optimal path planning in three test cases: (i) a canonical stochastic steady-front with uncertain flow strength, (ii) a stochastic barotropic quasi-geostrophic double-gyre circulation, and (iii) a stochastic flow past a circular island. For all the three test cases, we analyze the results with a focus on studying the effect of flow uncertainty on the reachability fronts and time-optimal paths, and their probabilistic properties. With the first test case, we demonstrate the approach and verify the accuracy of our solutions by comparing them with the Monte Carlo solutions. With the second, we show that different flow field realizations can result in paths with high spatial dissimilarity but with similar arrival times. With the third, we provide an example where time-optimal path variability can be very high and sensitive to uncertainty in eddy shedding direction downstream of the island.
Date issued
2018
URI
https://hdl.handle.net/1721.1/134966
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Computer Methods in Applied Mechanics and Engineering
Publisher
Elsevier BV

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.