Show simple item record

dc.contributor.authorLi, Lan
dc.contributor.authorLin, Hongtao
dc.contributor.authorQiao, Shutao
dc.contributor.authorHuang, Yi-Zhong
dc.contributor.authorLi, Jun-Ying
dc.contributor.authorMichon, Jérôme
dc.contributor.authorGu, Tian
dc.contributor.authorAlosno-Ramos, Carlos
dc.contributor.authorVivien, Laurent
dc.contributor.authorYadav, Anupama
dc.contributor.authorRichardson, Kathleen
dc.contributor.authorLu, Nanshu
dc.contributor.authorHu, Juejun
dc.date.accessioned2021-10-27T20:10:06Z
dc.date.available2021-10-27T20:10:06Z
dc.date.issued2018
dc.identifier.urihttps://hdl.handle.net/1721.1/134968
dc.description.abstract© The Author(s) 2018. Mechanically stretchable photonics provides a new geometric degree of freedom for photonic system design and foresees applications ranging from artificial skins to soft wearable electronics. Here we describe the design and experimental realization of the first single-mode stretchable photonic devices. These devices, made of chalcogenide glass and epoxy polymer materials, are monolithically integrated on elastomer substrates. To impart mechanical stretching capability to devices built using these intrinsically brittle materials, our design strategy involves local substrate stiffening to minimize shape deformation of critical photonic components, and interconnecting optical waveguides assuming a meandering Euler spiral geometry to mitigate radiative optical loss. Devices fabricated following such design can sustain 41% nominal tensile strain and 3000 stretching cycles without measurable degradation in optical performance. In addition, we present a rigorous analytical model to quantitatively predict stress-optical coupling behavior in waveguide devices of arbitrary geometry without using a single fitting parameter.
dc.language.isoen
dc.publisherSpringer Science and Business Media LLC
dc.relation.isversionof10.1038/LSA.2017.138
dc.rightsCreative Commons Attribution 4.0 International license
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceNature
dc.titleMonolithically integrated stretchable photonics
dc.typeArticle
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.relation.journalLight: Science and Applications
dc.eprint.versionFinal published version
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/PeerReviewed
dc.date.updated2019-09-20T16:12:40Z
dspace.orderedauthorsLi, L; Lin, H; Qiao, S; Huang, Y-Z; Li, J-Y; Michon, J; Gu, T; Alosno-Ramos, C; Vivien, L; Yadav, A; Richardson, K; Lu, N; Hu, J
dspace.date.submission2019-09-20T16:12:42Z
mit.journal.volume7
mit.journal.issue2
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record