Show simple item record

dc.contributor.authorDemaine, Erik D
dc.contributor.authorRudoy, Mikhail
dc.date.accessioned2022-01-13T15:30:48Z
dc.date.available2021-10-27T20:10:09Z
dc.date.available2022-01-13T15:30:48Z
dc.date.issued2018
dc.identifier.urihttps://hdl.handle.net/1721.1/134978.2
dc.description.abstract© 2018 Elsevier B.V. The 15 puzzle is a classic reconfiguration puzzle with fifteen uniquely labeled unit squares within a 4×4 board in which the goal is to slide the squares (without ever overlapping) into a target configuration. By generalizing the puzzle to an n×n board with n2−1 squares, we can study the computational complexity of problems related to the puzzle; in particular, we consider the problem of determining whether a given end configuration can be reached from a given start configuration via at most a given number of moves. This problem was shown NP-complete in [1]. We provide an alternative simpler proof of this fact by reduction from the rectilinear Steiner tree problem.en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionof10.1016/J.TCS.2018.04.031en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcearXiven_US
dc.titleA simple proof that the (n2 − 1)-puzzle is harden_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.relation.journalTheoretical Computer Scienceen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-06-11T12:47:16Z
dspace.orderedauthorsDemaine, ED; Rudoy, Men_US
dspace.date.submission2019-06-11T12:47:17Z
mit.journal.volume732en_US
mit.licensePUBLISHER_CC
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version