MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fast thermal relaxation in cavity-coupled graphene bolometers with a Johnson noise read-out

Author(s)
Efetov, Dmitri K; Shiue, Ren-Jye; Gao, Yuanda; Skinner, Brian; Walsh, Evan D; Choi, Hyeongrak; Zheng, Jiabao; Tan, Cheng; Grosso, Gabriele; Peng, Cheng; Hone, James; Fong, Kin Chung; Englund, Dirk; ... Show more Show less
Thumbnail
DownloadAccepted version (1.007Mb)
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
© 2018, The Author(s). High sensitivity, fast response time and strong light absorption are the most important metrics for infrared sensing and imaging. The trade-off between these characteristics remains the primary challenge in bolometry. Graphene with its unique combination of a record small electronic heat capacity and a weak electron–phonon coupling has emerged as a sensitive bolometric medium that allows for high intrinsic bandwidths1–3. Moreover, the material’s light absorption can be enhanced to near unity by integration into photonic structures. Here, we introduce an integrated hot-electron bolometer based on Johnson noise readout of electrons in ultra-clean hexagonal-boron-nitride-encapsulated graphene, which is critically coupled to incident radiation through a photonic nanocavity with Q = 900. The device operates at telecom wavelengths and shows an enhanced bolometric response at charge neutrality. At 5 K, we obtain a noise equivalent power of about 10 pW Hz–1/2, a record fast thermal relaxation time, <35 ps, and an improved light absorption. However the device can operate even above 300 K with reduced sensitivity. We work out the performance mechanisms and limits of the graphene bolometer and give important insights towards the potential development of practical applications.
Date issued
2018
URI
https://hdl.handle.net/1721.1/134979
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Physics
Journal
Nature Nanotechnology
Publisher
Springer Nature

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.