Show simple item record

dc.contributor.authorMouradian, Sara L
dc.contributor.authorEnglund, Dirk
dc.date.accessioned2021-10-27T20:10:12Z
dc.date.available2021-10-27T20:10:12Z
dc.date.issued2017
dc.identifier.urihttps://hdl.handle.net/1721.1/134989
dc.description.abstract© 2017 Author(s). Photonic nanocavities in diamond have emerged as useful structures for interfacing photons and embedded atomic color centers, such as the nitrogen vacancy center. Here, we present a hybrid nanocavity design that enables (i) a loaded quality factor exceeding 50 000 (unloaded Q>106) with 75% of the enhanced emission collected into an underlying waveguide circuit, (ii) MEMS-based cavity spectral tuning without straining the diamond, and (iii) the use of a diamond waveguide with straight sidewalls to minimize surface defects and charge traps. This system addresses the need for scalable on-chip photonic interfaces to solid-state quantum emitters.
dc.language.isoen
dc.publisherAIP Publishing
dc.relation.isversionof10.1063/1.4978204
dc.rightsCreative Commons Attribution 4.0 International license
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceAmerican Institute of Physics (AIP)
dc.titleA tunable waveguide-coupled cavity design for scalable interfaces to solid-state quantum emitters
dc.typeArticle
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.relation.journalAPL Photonics
dc.eprint.versionFinal published version
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/PeerReviewed
dc.date.updated2019-06-14T17:43:54Z
dspace.orderedauthorsMouradian, SL; Englund, D
dspace.date.submission2019-06-14T17:43:56Z
mit.journal.volume2
mit.journal.issue4
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record