MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Inverse uncertainty quantification using the modular Bayesian approach based on Gaussian process, Part 1: Theory

Author(s)
Wu, Xu; Kozlowski, Tomasz; Meidani, Hadi; Shirvan, Koroush
Thumbnail
DownloadSubmitted version (1.088Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
© 2018 Elsevier B.V. In nuclear reactor system design and safety analysis, the Best Estimate plus Uncertainty (BEPU) methodology requires that computer model output uncertainties must be quantified in order to prove that the investigated design stays within acceptance criteria. “Expert opinion” and “user self-evaluation” have been widely used to specify computer model input uncertainties in previous uncertainty, sensitivity and validation studies. Inverse Uncertainty Quantification (UQ) is the process to inversely quantify input uncertainties based on experimental data in order to more precisely quantify such ad-hoc specifications of the input uncertainty information. In this paper, we used Bayesian analysis to establish the inverse UQ formulation, with systematic and rigorously derived metamodels constructed by Gaussian Process (GP). Due to incomplete or inaccurate underlying physics, as well as numerical approximation errors, computer models always have discrepancy/bias in representing the realities, which can cause over-fitting if neglected in the inverse UQ process. The model discrepancy term is accounted for in our formulation through the “model updating equation”. We provided a detailed introduction and comparison of the full and modular Bayesian approaches for inverse UQ, as well as pointed out their limitations when extrapolated to the validation/prediction domain. Finally, we proposed an improved modular Bayesian approach that can avoid extrapolating the model discrepancy that is learnt from the inverse UQ domain to the validation/prediction domain.
Date issued
2018
URI
https://hdl.handle.net/1721.1/135012
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Journal
Nuclear Engineering and Design
Publisher
Elsevier BV

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.