MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Accelerating Materials Development via Automation, Machine Learning, and High-Performance Computing

Author(s)
Correa-Baena, Juan-Pablo; Hippalgaonkar, Kedar; van Duren, Jeroen; Jaffer, Shaffiq; Chandrasekhar, Vijay R; Stevanovic, Vladan; Wadia, Cyrus; Guha, Supratik; Buonassisi, Tonio; ... Show more Show less
Thumbnail
DownloadAccepted version (681.9Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
© 2018 Successful materials innovations can transform society. However, materials research often involves long timelines and low success probabilities, dissuading investors who have expectations of shorter times from bench to business. A combination of emergent technologies could accelerate the pace of novel materials development by ten times or more, aligning the timelines of stakeholders (investors and researchers), markets, and the environment, while increasing return on investment. First, tool automation enables rapid experimental testing of candidate materials. Second, high-performance computing concentrates experimental bandwidth on promising compounds by predicting and inferring bulk, interface, and defect-related properties. Third, machine learning connects the former two, where experimental outputs automatically refine theory and help define next experiments. We describe state-of-the-art attempts to realize this vision and identify resource gaps. We posit that over the coming decade, this combination of tools will transform the way we perform materials research, with considerable first-mover advantages at stake. The convergence of high-performance computing, automation, and machine learning promises to accelerate the rate of materials discovery by ≥10 times, better aligning investor and stakeholder timelines. Infrastructure and human-capital investments are discussed, including equipment capabilities, data management, education, and incentives. As our field transitions from thinking “data poor” to thinking “data rich,” we envision a scientific laboratory where the process of materials discovery continues without disruptions, aided by computational power augmenting the human mind, and freeing the latter to perform research closer to the speed of imagination, addressing societal challenges in market-relevant timeframes. A combination of emergent technologies promises to accelerate novel materials development by ten times or more: tool automation, high-performance computing, and machine learning. We describe state-of-the-art attempts to realize this vision and identify resource gaps, including required infrastructure and human-capital investments.
Date issued
2018
URI
https://hdl.handle.net/1721.1/135013
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Joule
Publisher
Elsevier BV

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.