Show simple item record

dc.contributor.authorAlcaraz Iranzo, David
dc.contributor.authorNanot, Sébastien
dc.contributor.authorDias, Eduardo JC
dc.contributor.authorEpstein, Itai
dc.contributor.authorPeng, Cheng
dc.contributor.authorEfetov, Dmitri K
dc.contributor.authorLundeberg, Mark B
dc.contributor.authorParret, Romain
dc.contributor.authorOsmond, Johann
dc.contributor.authorHong, Jin-Yong
dc.contributor.authorKong, Jing
dc.contributor.authorEnglund, Dirk R
dc.contributor.authorPeres, Nuno MR
dc.contributor.authorKoppens, Frank HL
dc.date.accessioned2021-10-27T20:10:20Z
dc.date.available2021-10-27T20:10:20Z
dc.date.issued2018
dc.identifier.urihttps://hdl.handle.net/1721.1/135017
dc.description.abstract© 2017 The Authors. The ability to confine light into tiny spatial dimensions is important for applications such as microscopy, sensing, and nanoscale lasers. Although plasmons offer an appealing avenue to confine light, Landau damping in metals imposes a trade-off between optical field confinement and losses. We show that a graphene-insulator-metal heterostructure can overcome that trade-off, and demonstrate plasmon confinement down to the ultimate limit of the length scale of one atom. This is achieved through far-field excitation of plasmon modes squeezed into an atomically thin hexagonal boron nitride dielectric spacer between graphene and metal rods. A theoretical model that takes into account the nonlocal optical response of both graphene and metal is used to describe the results. These ultraconfined plasmonic modes, addressed with far-field light excitation, enable a route to new regimes of ultrastrong light-matter interactions.
dc.language.isoen
dc.publisherAmerican Association for the Advancement of Science (AAAS)
dc.relation.isversionof10.1126/SCIENCE.AAR8438
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourcearXiv
dc.titleProbing the ultimate plasmon confinement limits with a van der Waals heterostructure
dc.typeArticle
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.relation.journalScience
dc.eprint.versionAuthor's final manuscript
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/PeerReviewed
dc.date.updated2019-06-14T16:15:59Z
dspace.orderedauthorsAlcaraz Iranzo, D; Nanot, S; Dias, EJC; Epstein, I; Peng, C; Efetov, DK; Lundeberg, MB; Parret, R; Osmond, J; Hong, J-Y; Kong, J; Englund, DR; Peres, NMR; Koppens, FHL
dspace.date.submission2019-06-14T16:16:01Z
mit.journal.volume360
mit.journal.issue6386
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record