MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimization of Grignard Addition to Esters: Kinetic and Mechanistic Study of Model Phthalide Using Flow Chemistry

Author(s)
Pedersen, Michael J; Born, Stephen; Neuenschwander, Ulrich; Skovby, Tommy; Mealy, Michael J; Kiil, Søren; Dam-Johansen, Kim; Jensen, Klavs F; ... Show more Show less
Thumbnail
DownloadAccepted version (838.8Kb)
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
© 2018 American Chemical Society. The kinetics of sequential addition of a distinct Grignard species onto a lactone is studied by flow chemistry. The experimental data are shown to be consistent with a kinetic model based on four reaction steps, reaction of ester to magnesium hemiacetal, rearrangement to ketone (forward and backward), and reaction of ketone to tertiary alcohol upon quenching. The experimental derived reaction mechanism is supported by ab initio molecular computations, and the predicted activation energy is in good agreement with the experimental observations. The Grignard reaction follows a substrate-independent, reductive [2 + 2] cycloaddition of the Meisenheimer/Casper type. Moreover, the rearrangement equilibrium between magnesium hemiacetal and ketone is characterized and found to be feasible. Monoaddition of the ester carbonyl group is demonstrated for fluorophenylmagnesium bromide but at reaction conditions at -40 °C with several hours of residence time. Working under cryogenic temperature conditions is essential to realizing monoaddition of the ester carbonyl group with Grignard reagents.
Date issued
2018
URI
https://hdl.handle.net/1721.1/135019
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Industrial and Engineering Chemistry Research
Publisher
American Chemical Society (ACS)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.