MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fatigue Crack Growth Behavior and Associated Microstructure in a Metastable High-Entropy Alloy

Author(s)
Eguchi, Takeshi; Koyama, Motomichi; Fukushima, Yoshihiro; Tasan, Cemal Cem; Tsuzaki, Kaneaki
Thumbnail
DownloadPublished version (1.099Mb)
Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
© 2018 The Authors. High-entropy alloys (HEAs) containing different kinds of high-concentration solute atoms provide new concepts for obtaining excellent balance of strength and ductility. In particular, a metastable dual-phase HEA (Fe30Mn10Cr10Co; FCC matrix and HCP second phase) shows superior ductility and strength owing to the transformation-induced plasticity effect associated with deformation-induced HCP-martensitic transformation. In this context, the fatigue properties of metastable HEAs are to be investigated towards practical applications as structure materials. In this study, the fatigue crack growth behaviors of HEA and type 316L austenitic stainless steel (FCC single phase) were comparatively examined. The crack growth rate of HEA was comparable to that of 316L. In HEA, the fatigue crack was covered by a large amount of HCP-martensite. In general, the HCP-martensite was cracked easily because of the smaller number of slip systems. However, the negative effect of HCP-martensite did not appear in the fatigue crack growth rate of HEA. By electron channeling contrast imaging, we found that the HCP-martensite beneath the fracture surface contained significant orientation gradient and high density of dislocations, indicating that HCP-martensite in the present Fe30Mn10Cr10Co HEA had high plastic deformability and associated stress accommodation capacity.
Date issued
2018
URI
https://hdl.handle.net/1721.1/135054
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Procedia Structural Integrity
Publisher
Elsevier BV

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.