MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The optical morphologies of galaxies in the IllustrisTNG simulation: a comparison to Pan-STARRS observations

Author(s)
Rodriguez-Gomez, Vicente; Snyder, Gregory F; Lotz, Jennifer M; Nelson, Dylan; Pillepich, Annalisa; Springel, Volker; Genel, Shy; Weinberger, Rainer; Tacchella, Sandro; Pakmor, Rüdiger; Torrey, Paul; Marinacci, Federico; Vogelsberger, Mark; Hernquist, Lars; Thilker, David A; ... Show more Show less
Thumbnail
DownloadAccepted version (2.022Mb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2018 The Author(s). We have generated synthetic images of ∼27 000 galaxies from the IllustrisTNG and the original Illustris hydrodynamic cosmological simulations, designed to match Pan-STARRS observations of log10(M∗/M·)-∼9.8-11.3 galaxies at z ∼0.05. Most of our synthetic images were created with the SKIRT radiative transfer code, including the effects of dust attenuation and scattering, and performing the radiative transfer directly on the Voronoi mesh used by the simulations themselves. We have analysed both our synthetic and real Pan-STARRS images with the newly developed statmorph code, which calculates non-parametric morphological diagnostics-including the Gini-M20 and concentration-asymmetry-smoothness statistics-and performs 2D Sersic fits. Overall, we find that the optical morphologies of IllustrisTNG galaxies are in good agreement with observations, and represent a substantial improvement compared to the original Illustris simulation. In particular, the locus of the Gini-M20 diagram is consistent with that inferred from observations, while the median trends with stellar mass of all the morphological, size and shape parameters considered in this work lie within the ∼1s scatter of the observational trends. However, the IllustrisTNG model has some difficulty with more stringent tests, such as producing a strong morphology-colour relation. This results in a somewhat higher fraction of red discs and blue spheroids compared to observations. Similarly, the morphology-size relation is problematic: while observations show that discs tend to be larger than spheroids at a fixed stellar mass, such a trend is not present in IllustrisTNG.
Date issued
2019
URI
https://hdl.handle.net/1721.1/135055
Department
Massachusetts Institute of Technology. Department of Physics; MIT Kavli Institute for Astrophysics and Space Research
Journal
Monthly Notices of the Royal Astronomical Society
Publisher
Oxford University Press (OUP)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.