Show simple item record

dc.contributor.authorZhang, Yunming
dc.contributor.authorYang, Mengjiao
dc.contributor.authorBaghdadi, Riyadh
dc.contributor.authorKamil, Shoaib
dc.contributor.authorShun, Julian
dc.contributor.authorAmarasinghe, Saman
dc.date.accessioned2021-10-27T20:10:37Z
dc.date.available2021-10-27T20:10:37Z
dc.date.issued2018
dc.identifier.urihttps://hdl.handle.net/1721.1/135079
dc.description.abstract<jats:p>The performance bottlenecks of graph applications depend not only on the algorithm and the underlying hardware, but also on the size and structure of the input graph. As a result, programmers must try different combinations of a large set of techniques, which make tradeoffs among locality, work-efficiency, and parallelism, to develop the best implementation for a specific algorithm and type of graph. Existing graph frameworks and domain specific languages (DSLs) lack flexibility, supporting only a limited set of optimizations.</jats:p> <jats:p>This paper introduces GraphIt, a new DSL for graph computations that generates fast implementations for algorithms with different performance characteristics running on graphs with different sizes and structures. GraphIt separates what is computed (algorithm) from how it is computed (schedule). Programmers specify the algorithm using an algorithm language, and performance optimizations are specified using a separate scheduling language. The algorithm language simplifies expressing the algorithms, while exposing opportunities for optimizations. We formulate graph optimizations, including edge traversal direction, data layout, parallelization, cache, NUMA, and kernel fusion optimizations, as tradeoffs among locality, parallelism, and work-efficiency. The scheduling language enables programmers to easily search through this complicated tradeoff space by composing together a large set of edge traversal, vertex data layout, and program structure optimizations. The separation of algorithm and schedule also enables us to build an autotuner on top of GraphIt to automatically find high-performance schedules. The compiler uses a new scheduling representation, the graph iteration space, to model, compose, and ensure the validity of the large number of optimizations. We evaluate GraphIt’s performance with seven algorithms on graphs with different structures and sizes. GraphIt outperforms the next fastest of six state-of-the-art shared-memory frameworks (Ligra, Green-Marl, GraphMat, Galois, Gemini, and Grazelle) on 24 out of 32 experiments by up to 4.8×, and is never more than 43% slower than the fastest framework on the other experiments. GraphIt also reduces the lines of code by up to an order of magnitude compared to the next fastest framework.</jats:p>
dc.language.isoen
dc.publisherAssociation for Computing Machinery (ACM)
dc.relation.isversionof10.1145/3276491
dc.rightsCreative Commons Attribution 4.0 International license
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceACM
dc.titleGraphIt: a high-performance graph DSL
dc.typeArticle
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.relation.journalProceedings of the ACM on Programming Languages
dc.eprint.versionFinal published version
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
eprint.statushttp://purl.org/eprint/status/NonPeerReviewed
dc.date.updated2019-05-03T18:27:23Z
dspace.orderedauthorsZhang, Y; Yang, M; Baghdadi, R; Kamil, S; Shun, J; Amarasinghe, S
dspace.date.submission2019-05-03T18:27:24Z
mit.journal.volume2
mit.journal.issueOOPSLA
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record