MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Electrochemical Kinetics of SEI Growth on Carbon Black: Part II. Modeling

Author(s)
Das, Supratim; Attia, Peter M; Chueh, William C; Bazant, Martin Z
Thumbnail
DownloadPublished version (1.122Mb)
Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
© 2019 The Electrochemical Society. Mathematical models of capacity fade can reduce the time and cost of lithium-ion battery development and deployment, and growth of the solid-electrolyte interphase (SEI) is a major source of capacity fade. Experiments in Part I reveal nonlinear voltage dependence and strong charge-discharge asymmetry in SEI growth on carbon black negative electrodes, which is not captured by previous models. Here, we present a theoretical model for the electrochemical kinetics of SEI growth coupled to lithium intercalation, which accurately predicts experimental results with few adjustable parameters. The key hypothesis is that the initial SEI is a mixed ionelectron conductor, and its electronic conductivity varies approximately with the square of the local lithium concentration, consistent with hopping conduction of electrons along percolating networks. By including a lithium-ion concentration dependence for the electronic conductivity in the SEI, the bulk SEI thus modulates the overpotential and exchange current of the electrolyte reduction reaction. As a result, SEI growth is promoted during lithiation but suppressed during delithiation. This new insight establishes the fundamental electrochemistry of SEI growth kinetics. Our model improves upon existing models by introducing the effects of electrochemical SEI growth and its dependence on potential, current magnitude, and current direction in predicting capacity fade.
Date issued
2019
URI
https://hdl.handle.net/1721.1/135121
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Journal of The Electrochemical Society
Publisher
The Electrochemical Society

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.