MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Gated Orthogonal Recurrent Units: On Learning to Forget

Author(s)
Jing, Li; Gulcehre, Caglar; Peurifoy, John; Shen, Yichen; Tegmark, Max; Soljacic, Marin; Bengio, Yoshua; ... Show more Show less
Thumbnail
DownloadPublished version (596.1Kb)
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
© 2019 Massachusetts Institute of Technology. We present a novel recurrent neural network (RNN)based model that combines the remembering ability of unitary evolution RNNs with the ability of gated RNNs to effectively forget redundant or irrelevant information in its memory. We achieve this by extending restricted orthogonal evolution RNNs with a gating mechanism similar to gated recurrent unit RNNs with a reset gate and an update gate. Our model is able to outperform long short-term memory, gated recurrent units, and vanilla unitary or orthogonal RNNs on several long-term-dependency benchmark tasks. We empirically show that both orthogonal and unitary RNNs lack the ability to forget. This ability plays an important role in RNNs. We provide competitive results along with an analysis of our model on many natural sequential tasks, including question answering, speech spectrum prediction, character-level language modeling, and synthetic tasks that involve long-term dependencies such as algorithmic, denoising, and copying tasks.
Date issued
2019
URI
https://hdl.handle.net/1721.1/135148
Department
Sloan School of Management; Massachusetts Institute of Technology. Department of Physics
Journal
Neural Computation
Publisher
MIT Press - Journals

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.