Show simple item record

dc.contributor.authorColey, Connor W.
dc.contributor.authorJin, Wengong
dc.contributor.authorRogers, Luke
dc.contributor.authorJamison, Timothy F.
dc.contributor.authorJaakkola, Tommi S.
dc.contributor.authorGreen, William H.
dc.contributor.authorBarzilay, Regina
dc.contributor.authorJensen, Klavs F.
dc.date.accessioned2022-03-23T15:12:32Z
dc.date.available2021-10-27T20:11:03Z
dc.date.available2022-03-23T15:12:32Z
dc.date.issued2019-01
dc.date.submitted2018-09
dc.identifier.issn2041-6520
dc.identifier.issn2041-6539
dc.identifier.urihttps://hdl.handle.net/1721.1/135165.2
dc.description.abstract© 2019 The Royal Society of Chemistry. We present a supervised learning approach to predict the products of organic reactions given their reactants, reagents, and solvent(s). The prediction task is factored into two stages comparable to manual expert approaches: considering possible sites of reactivity and evaluating their relative likelihoods. By training on hundreds of thousands of reaction precedents covering a broad range of reaction types from the patent literature, the neural model makes informed predictions of chemical reactivity. The model predicts the major product correctly over 85% of the time requiring around 100 ms per example, a significantly higher accuracy than achieved by previous machine learning approaches, and performs on par with expert chemists with years of formal training. We gain additional insight into predictions via the design of the neural model, revealing an understanding of chemistry qualitatively consistent with manual approaches.en_US
dc.language.isoen
dc.publisherRoyal Society of Chemistry (RSC)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/c8sc04228den_US
dc.rightsCreative Commons Attribution 3.0 unported licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/en_US
dc.sourceRoyal Society of Chemistry (RSC)en_US
dc.titleA graph-convolutional neural network model for the prediction of chemical reactivityen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineering
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry
dc.relation.journalChemical Scienceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-05-07T18:39:30Z
dspace.orderedauthorsColey, CW; Jin, W; Rogers, L; Jamison, TF; Jaakkola, TS; Green, WH; Barzilay, R; Jensen, KFen_US
dspace.date.submission2019-05-07T18:39:31Z
mit.journal.volume10en_US
mit.journal.issue2en_US
mit.metadata.statusAuthority Work Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version