MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Size distribution theory for jumping-droplet condensation

Author(s)
Zhang, Lenan; Xu, Zhenyuan; Lu, Zhengmao; Du, Jianyi; Wang, Evelyn N
Thumbnail
DownloadPublished version (1.927Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
© 2019 Author(s). Jumping-droplet condensation is promising for various applications where the droplet size distribution plays a key role in the overall system performance. Despite being extensively studied in recent works, inconsistencies existed in previous size distribution models as the droplet growth and removal mechanisms were often not properly described. Here, we developed a theoretical framework where the contact and the coalescence of droplets were identified as the dominant mechanisms for instantaneous size distribution change. We found a critical droplet diameter comparable to the average nucleation site distance, beyond which the droplet population decreased rapidly. This result is analogous to the well-known Fermi-Dirac distribution due to the underlying exclusive principle. We also showed the effect of the contact angle, that is, larger droplets become more probable as surface hydrophobicity increases. The coalescence count distribution given by the current theory agrees well with experimental data. Furthermore, we demonstrated the use of the proposed model in predicting condensation heat transfer coefficients, which also shows good agreement with previous experiments. Our size distribution theory elucidates the fundamental process of droplet growth and interactions leading to an overall size distribution during jumping-droplet condensation, which can be generally applied to self-cleaning, anti-icing/frosting, power generation, and water harvesting.
Date issued
2019
URI
https://hdl.handle.net/1721.1/135172
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Applied Physics Letters
Publisher
AIP Publishing

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.