MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

How Physical Proximity Shapes Complex Social Networks

Author(s)
Stopczynski, Arkadiusz; Pentland, Alex Sandy’; Lehmann, Sune
Thumbnail
DownloadPublished version (1.509Mb)
Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
© 2018, The Author(s). Social interactions among humans create complex networks and – despite a recent increase of online communication – the interactions mediated through physical proximity remain a fundamental way for people to connect. A common way to quantify the nature of the links between individuals is to consider repeated interactions: frequently occurring interactions indicate strong ties, such as friendships, while ties with low weights can indicate random encounters. Here we focus on a different dimension: rather than the strength of links, we study physical distance between individuals when a link is activated. The findings presented here are based on a dataset of proximity events in a population of approximately 500 individuals. To quantify the impact of the physical proximity on the dynamic network, we use a simulated epidemic spreading processes in two distinct networks of physical proximity. We consider the network of short-range interactions defined as d ≲ 1 meter, and the long-range which includes all interactions d ≲ 10 meters. Since these two networks arise from the same set of underlying behavioral data, we are able to quantitatively measure how the specific definition of the proximity network – short-range versus long-range – impacts the resulting network structure as well as spreading dynamics in epidemic simulations. We find that the short-range network – consistent with the literature – is characterized by densely-connected neighborhoods bridged by weak ties. More surprisingly, however, we show that spreading in the long-range network is quite different, mainly shaped by spurious interactions.
Date issued
2018
URI
https://hdl.handle.net/1721.1/135176
Department
Massachusetts Institute of Technology. Media Laboratory
Journal
Scientific Reports
Publisher
Springer Nature

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.