Show simple item record

dc.contributor.authorMaulik, Davesh
dc.contributor.authorNeguţ, Andrei
dc.date.accessioned2021-10-27T20:22:25Z
dc.date.available2021-10-27T20:22:25Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/1721.1/135199
dc.description.abstract© The Author(s) 2020. Published by Cambridge University Press. The Beauville-Voisin conjecture for a hyperkähler manifold states that the subring of the Chow ring generated by divisor classes and Chern characters of the tangent bundle injects into the cohomology ring of. We prove a weak version of this conjecture when is the Hilbert scheme of points on a K3 surface for the subring generated by divisor classes and tautological classes. This in particular implies the weak splitting conjecture of Beauville for these geometries. In the process, we extend Lehn's formula and the Li-Qin-Wang algebra action from cohomology to Chow groups for the Hilbert scheme of an arbitrary smooth projective surface.
dc.language.isoen
dc.publisherCambridge University Press (CUP)
dc.relation.isversionof10.1017/S1474748020000377
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourcearXiv
dc.titleLEHN’S FORMULA IN CHOW AND CONJECTURES OF BEAUVILLE AND VOISIN
dc.typeArticle
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.relation.journalJournal of the Institute of Mathematics of Jussieu
dc.eprint.versionOriginal manuscript
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/NonPeerReviewed
dc.date.updated2021-05-24T17:38:31Z
dspace.orderedauthorsMaulik, D; Neguţ, A
dspace.date.submission2021-05-24T17:38:32Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record