MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Scalable Data Association for Extended Object Tracking

Author(s)
Meyer, Florian; Win, Moe Z
Thumbnail
DownloadPublished version (1.480Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Tracking extended objects based on measurements provided by light detection and ranging (LIDAR) and millimeter wave radio detection and ranging (RADAR) sensors is a key task to obtain situational awareness in important applications including autonomous driving and indoor robotics. In this paper, we propose probabilistic data association methods for localizing and tracking of extended objects that originate an unknown number of measurements. Our approach is based on factor graphs and the sum-product algorithm (SPA). In particular, we reduce computational complexity in a principled manner by means of 'stretching' factors in the graph. After stretching, new variable and factor nodes have lower dimensions than the original nodes. This leads to a reduced computational complexity of the resulting SPA. One of the introduced methods is based on an overcomplete description of data association uncertainty and has a computational complexity that only scales quadratically in the number of objects and linearly in the number of measurements. Without relying on suboptimal preprocessing steps such as a clustering of measurements, it can localize and track multiple objects that potentially generate a large number of measurements. Simulation results confirm that despite their lower computational complexity, the proposed methods can outperform reference methods based on clustering.
Date issued
2020
URI
https://hdl.handle.net/1721.1/135210
Department
Massachusetts Institute of Technology. Laboratory for Information and Decision Systems
Journal
IEEE Transactions on Signal and Information Processing over Networks
Publisher
Institute of Electrical and Electronics Engineers (IEEE)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.