Show simple item record

dc.contributor.authorSchaub, Michael T
dc.contributor.authorSegarra, Santiago
dc.contributor.authorTsitsiklis, John N
dc.date.accessioned2021-10-27T20:22:34Z
dc.date.available2021-10-27T20:22:34Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/1721.1/135229
dc.language.isoen
dc.publisherSociety for Industrial & Applied Mathematics (SIAM)
dc.relation.isversionof10.1137/19M1263340
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
dc.sourceSIAM
dc.titleBlind Identification of Stochastic Block Models from Dynamical Observations
dc.typeArticle
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Data, Systems, and Society
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systems
dc.relation.journalSIAM Journal on Mathematics of Data Science
dc.eprint.versionFinal published version
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/PeerReviewed
dc.date.updated2021-03-24T16:44:15Z
dspace.orderedauthorsSchaub, MT; Segarra, S; Tsitsiklis, JN
dspace.date.submission2021-03-24T16:44:17Z
mit.journal.volume2
mit.journal.issue2
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record