Notice
This is not the latest version of this item. The latest version can be found at:https://dspace.mit.edu/handle/1721.1/135257.2
The Exceptional Locus in the Bertini Irreducibility Theorem for a Morphism
dc.contributor.author | Poonen, Bjorn | |
dc.contributor.author | Slavov, Kaloyan | |
dc.date.accessioned | 2021-10-27T20:22:40Z | |
dc.date.available | 2021-10-27T20:22:40Z | |
dc.date.issued | 2020 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/135257 | |
dc.description.abstract | <jats:title>Abstract</jats:title> <jats:p>We introduce a novel approach to Bertini irreducibility theorems over an arbitrary field, based on random hyperplane slicing over a finite field. Extending a result of Benoist, we prove that for a morphism $\phi \colon X \to{\mathbb{P}}^n$ such that $X$ is geometrically irreducible and the nonempty fibers of $\phi $ all have the same dimension, the locus of hyperplanes $H$ such that $\phi ^{-1} H$ is not geometrically irreducible has dimension at most ${\operatorname{codim}}\ \phi (X)+1$. We give an application to monodromy groups above hyperplane sections.</jats:p> | |
dc.language.iso | en | |
dc.publisher | Oxford University Press (OUP) | |
dc.relation.isversionof | 10.1093/IMRN/RNAA182 | |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.source | MIT web domain | |
dc.title | The Exceptional Locus in the Bertini Irreducibility Theorem for a Morphism | |
dc.type | Article | |
dc.relation.journal | International Mathematics Research Notices | |
dc.eprint.version | Author's final manuscript | |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
eprint.status | http://purl.org/eprint/status/PeerReviewed | |
dc.date.updated | 2021-05-25T18:52:39Z | |
dspace.orderedauthors | Poonen, B; Slavov, K | |
dspace.date.submission | 2021-05-25T18:52:40Z | |
mit.license | OPEN_ACCESS_POLICY | |
mit.metadata.status | Authority Work and Publication Information Needed |