Notice

This is not the latest version of this item. The latest version can be found at:https://dspace.mit.edu/handle/1721.1/135257.2

Show simple item record

dc.contributor.authorPoonen, Bjorn
dc.contributor.authorSlavov, Kaloyan
dc.date.accessioned2021-10-27T20:22:40Z
dc.date.available2021-10-27T20:22:40Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/1721.1/135257
dc.description.abstract<jats:title>Abstract</jats:title> <jats:p>We introduce a novel approach to Bertini irreducibility theorems over an arbitrary field, based on random hyperplane slicing over a finite field. Extending a result of Benoist, we prove that for a morphism $\phi \colon X \to{\mathbb{P}}^n$ such that $X$ is geometrically irreducible and the nonempty fibers of $\phi $ all have the same dimension, the locus of hyperplanes $H$ such that $\phi ^{-1} H$ is not geometrically irreducible has dimension at most ${\operatorname{codim}}\ \phi (X)+1$. We give an application to monodromy groups above hyperplane sections.</jats:p>
dc.language.isoen
dc.publisherOxford University Press (OUP)
dc.relation.isversionof10.1093/IMRN/RNAA182
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourceMIT web domain
dc.titleThe Exceptional Locus in the Bertini Irreducibility Theorem for a Morphism
dc.typeArticle
dc.relation.journalInternational Mathematics Research Notices
dc.eprint.versionAuthor's final manuscript
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/PeerReviewed
dc.date.updated2021-05-25T18:52:39Z
dspace.orderedauthorsPoonen, B; Slavov, K
dspace.date.submission2021-05-25T18:52:40Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version