Show simple item record

dc.contributor.authorBavarian, Mohammad
dc.contributor.authorGhazi, Badih
dc.contributor.authorHaramaty, Elad
dc.contributor.authorKamath, Pritish
dc.contributor.authorRivest, Ronald L
dc.contributor.authorSudan, Madhu
dc.date.accessioned2021-10-27T20:22:41Z
dc.date.available2021-10-27T20:22:41Z
dc.date.issued2020-11-09
dc.identifier.urihttps://hdl.handle.net/1721.1/135260
dc.language.isoen
dc.publisherTheory of Computing Exchange
dc.relation.isversionof10.4086/toc.2020.v016a012
dc.rightsCreative Commons Attribution 4.0 International license
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceTheory of Computing
dc.titleOptimality of Correlated Sampling Strategies
dc.typeArticle
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.relation.journalTheory of Computing
dc.eprint.versionFinal published version
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/PeerReviewed
dc.date.updated2021-02-02T16:50:42Z
dspace.orderedauthorsBavarian, M; Ghazi, B; Haramaty, E; Kamath, P; Rivest, RL; Sudan, M
dspace.date.submission2021-02-02T16:50:46Z
mit.journal.volume16
mit.journal.issue1
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record