MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Train and test tightness of LP relaxations in structured prediction

Author(s)
Meshi, O; London, B; Weller, A; Sontag, D
Thumbnail
DownloadPublished version (634.7Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
© 2019 Ofer Meshi, Ben London, Adrian Weller, and David Sontag. Structured prediction is used in areas including computer vision and natural language processing to predict structured outputs such as segmentations or parse trees. In these settings, prediction is performed by MAP inference or, equivalently, by solving an integer linear program. Because of the complex scoring functions required to obtain accurate predictions, both learning and inference typically require the use of approximate solvers. We propose a theoretical explanation for the striking observation that approximations based on linear programming (LP) relaxations are often tight (exact) on real-world instances. In particular, we show that learning with LP relaxed inference encourages integrality of training instances, and that this training tightness generalizes to test data.
Date issued
2019-02-01
URI
https://hdl.handle.net/1721.1/135270
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
Journal of Machine Learning Research

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.