MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Urban heat island mitigation in Singapore: Evaluation using WRF/multilayer urban canopy model and local climate zones

Author(s)
Mughal, MO; Li, Xian-Xiang; Norford, Leslie K
Thumbnail
DownloadAccepted version (6.956Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
© 2020 Elsevier B.V. Mitigation and adaption measures must be designed strategically by urban planners, designers, and decision-makers to reduce urban heat island (UHI) related risks. We employed the Weather Research and Forecasting (WRF) model to assess UHI mitigation scenarios for the tropical city of Singapore during April 2016, including two heat wave periods. The local climate zones for Singapore were used as the land use/land cover data to account for the intra-urban variability. The simulations show that the canopy layer UHI intensity in Singapore can reach up to 5 °C in compact areas during nighttime. The results reveal that city-scale deployment of cool roofs can provide an overall reduction of 1.3 °C in the near-surface daytime air temperature in large low-rise areas. Increasing the thermostat set temperature to 25 °C from 21 °C in city-wide buildings can potentially reduce the air temperature due to less (~20%) waste heat discharge from air-conditioning units. A densification scenario considering an increase from approximately 7 841 people/km2 (2016) to 9040-9,600 people/km2 (2030) under the current climate leads to air temperature increase of 1.4 °C, which demonstrates the importance of limiting the densification of less compact areas in maintaining thermal comfort in the future.
Date issued
2020
URI
https://hdl.handle.net/1721.1/135289
Department
Singapore-MIT Alliance in Research and Technology (SMART); Massachusetts Institute of Technology. Department of Architecture
Journal
Urban Climate
Publisher
Elsevier BV

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.