Show simple item record

dc.contributor.authorde Cataldo, MAA
dc.contributor.authorMaulik, D
dc.date.accessioned2021-10-27T20:22:53Z
dc.date.available2021-10-27T20:22:53Z
dc.date.issued2020-01-01
dc.identifier.urihttps://hdl.handle.net/1721.1/135304
dc.description.abstractWe prove that the perverse Leray filtration for the Hitchin morphism is locally constant in families, thus providing some evidence towards the validity of the P = W conjecture due to de Cataldo, Hausel and Migliorini in non Abelian Hodge theory.
dc.language.isoen
dc.publisherInternational Press of Boston
dc.relation.isversionof10.4310/PAMQ.2020.v16.n5.a4
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourcearXiv
dc.titleThe perverse filtration for the hitchin fibration is locally constant
dc.typeArticle
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.relation.journalPure and Applied Mathematics Quarterly
dc.eprint.versionOriginal manuscript
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/NonPeerReviewed
dc.date.updated2021-05-24T17:41:23Z
dspace.orderedauthorsde Cataldo, MAA; Maulik, D
dspace.date.submission2021-05-24T17:41:24Z
mit.journal.volume16
mit.journal.issue5
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record