Show simple item record

dc.contributor.authorHerring, Patrick
dc.contributor.authorBalaji Gopal, Chirranjeevi
dc.contributor.authorAykol, Muratahan
dc.contributor.authorMontoya, Joseph H
dc.contributor.authorAnapolsky, Abraham
dc.contributor.authorAttia, Peter M
dc.contributor.authorGent, William
dc.contributor.authorHummelshøj, Jens S
dc.contributor.authorHung, Linda
dc.contributor.authorKwon, Ha-Kyung
dc.contributor.authorMoore, Patrick
dc.contributor.authorSchweigert, Daniel
dc.contributor.authorSeverson, Kristen A
dc.contributor.authorSuram, Santosh
dc.contributor.authorYang, Zi
dc.contributor.authorBraatz, Richard D
dc.contributor.authorStorey, Brian D
dc.date.accessioned2021-10-27T20:22:59Z
dc.date.available2021-10-27T20:22:59Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/1721.1/135330
dc.description.abstract© 2020 The Authors Battery evaluation and early prediction software package (BEEP) provides an open-source Python-based framework for the management and processing of high-throughput battery cycling data-streams. BEEPs features include file-system based organization of raw cycling data and metadata received from cell testing equipment, validation protocols that ensure the integrity of such data, parsing and structuring of data into Python-objects ready for analytics, featurization of structured cycling data to serve as input for machine-learning, and end-to-end examples that use processed data for anomaly detection and featurized data to train early-prediction models for cycle life. BEEP is developed in response to the software and expertise gap between cell-level battery testing and data-driven battery development.
dc.language.isoen
dc.publisherElsevier BV
dc.relation.isversionof10.1016/J.SOFTX.2020.100506
dc.rightsCreative Commons Attribution 4.0 International license
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceElsevier
dc.titleBEEP: A Python library for Battery Evaluation and Early Prediction
dc.typeArticle
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.relation.journalSoftwareX
dc.eprint.versionFinal published version
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/PeerReviewed
dc.date.updated2021-06-09T12:26:11Z
dspace.orderedauthorsHerring, P; Balaji Gopal, C; Aykol, M; Montoya, JH; Anapolsky, A; Attia, PM; Gent, W; Hummelshøj, JS; Hung, L; Kwon, H-K; Moore, P; Schweigert, D; Severson, KA; Suram, S; Yang, Z; Braatz, RD; Storey, BD
dspace.date.submission2021-06-09T12:26:13Z
mit.journal.volume11
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record