Show simple item record

dc.contributor.authorKronheimer, PB
dc.contributor.authorMrowka, Tomasz S
dc.date.accessioned2022-06-30T15:54:41Z
dc.date.available2021-10-27T20:23:04Z
dc.date.available2022-06-30T15:54:41Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/135347.2
dc.description.abstractConcordance invariants of knots are derived from the instanton homology groups with local coefficients, as introduced in earlier work of the authors. These concordance invariants include a 1-parameter family of homomorphisms (Formula presented.), from the knot concordance group to (Formula presented.). Prima facie, these concordance invariants have the potential to provide independent bounds on the genus and number of double points for immersed surfaces with boundary a given knot.en_US
dc.language.isoen
dc.publisherWileyen_US
dc.relation.isversionof10.1112/jlms.12439en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleInstantons and some concordance invariants of knotsen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalJournal of the London Mathematical Societyen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2021-05-25T13:49:23Z
dspace.orderedauthorsKronheimer, PB; Mrowka, TSen_US
dspace.date.submission2021-05-25T13:49:24Z
mit.journal.volume104en_US
mit.journal.issue2en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version