dc.contributor.author | Kronheimer, PB | |
dc.contributor.author | Mrowka, Tomasz S | |
dc.date.accessioned | 2022-06-30T15:54:41Z | |
dc.date.available | 2021-10-27T20:23:04Z | |
dc.date.available | 2022-06-30T15:54:41Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/135347.2 | |
dc.description.abstract | Concordance invariants of knots are derived from the instanton homology groups with local coefficients, as introduced in earlier work of the authors. These concordance invariants include a 1-parameter family of homomorphisms (Formula presented.), from the knot concordance group to (Formula presented.). Prima facie, these concordance invariants have the potential to provide independent bounds on the genus and number of double points for immersed surfaces with boundary a given knot. | en_US |
dc.language.iso | en | |
dc.publisher | Wiley | en_US |
dc.relation.isversionof | 10.1112/jlms.12439 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | Instantons and some concordance invariants of knots | en_US |
dc.type | Article | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.relation.journal | Journal of the London Mathematical Society | en_US |
dc.eprint.version | Original manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dc.date.updated | 2021-05-25T13:49:23Z | |
dspace.orderedauthors | Kronheimer, PB; Mrowka, TS | en_US |
dspace.date.submission | 2021-05-25T13:49:24Z | |
mit.journal.volume | 104 | en_US |
mit.journal.issue | 2 | en_US |
mit.license | OPEN_ACCESS_POLICY | |
mit.metadata.status | Publication Information Needed | en_US |