Notice

This is not the latest version of this item. The latest version can be found at:https://dspace.mit.edu/handle/1721.1/135347.2

Show simple item record

dc.contributor.authorKronheimer, PB
dc.contributor.authorMrowka, TS
dc.date.accessioned2021-10-27T20:23:04Z
dc.date.available2021-10-27T20:23:04Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/135347
dc.description.abstractConcordance invariants of knots are derived from the instanton homology groups with local coefficients, as introduced in earlier work of the authors. These concordance invariants include a 1-parameter family of homomorphisms (Formula presented.), from the knot concordance group to (Formula presented.). Prima facie, these concordance invariants have the potential to provide independent bounds on the genus and number of double points for immersed surfaces with boundary a given knot.
dc.language.isoen
dc.publisherWiley
dc.relation.isversionof10.1112/jlms.12439
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourcearXiv
dc.titleInstantons and some concordance invariants of knots
dc.typeArticle
dc.relation.journalJournal of the London Mathematical Society
dc.eprint.versionOriginal manuscript
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/NonPeerReviewed
dc.date.updated2021-05-25T13:49:23Z
dspace.orderedauthorsKronheimer, PB; Mrowka, TS
dspace.date.submission2021-05-25T13:49:24Z
mit.journal.volume104
mit.journal.issue2
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version