MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Geometric Sketching Compactly Summarizes the Single-Cell Transcriptomic Landscape

Author(s)
Hie, Brian; Cho, Hyunghoon; DeMeo, Benjamin; Bryson, Bryan; Berger, Bonnie
Thumbnail
DownloadAccepted version (1.758Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Large-scale single-cell RNA sequencing (scRNA-seq) studies that profile hundreds of thousands of cells are becoming increasingly common, overwhelming existing analysis pipelines. Here, we describe how to enhance and accelerate single-cell data analysis by summarizing the transcriptomic heterogeneity within a dataset using a small subset of cells, which we refer to as a geometric sketch. Our sketches provide more comprehensive visualization of transcriptional diversity, capture rare cell types with high sensitivity, and reveal biological cell types via clustering. Our sketch of umbilical cord blood cells uncovers a rare subpopulation of inflammatory macrophages, which we experimentally validated. The construction of our sketches is extremely fast, which enabled us to accelerate other crucial resource-intensive tasks, such as scRNA-seq data integration, while maintaining accuracy. We anticipate our algorithm will become an increasingly essential step when sharing and analyzing the rapidly growing volume of scRNA-seq data and help enable the democratization of single-cell omics.
Date issued
2019
URI
https://hdl.handle.net/1721.1/135349
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Mathematics; Massachusetts Institute of Technology. Department of Biological Engineering
Journal
Cell Systems
Publisher
Elsevier BV

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.