MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ultralow Resistance Two‐Stage Electrostatically Assisted Air Filtration by Polydopamine Coated PET Coarse Filter

Author(s)
Tian, Enze; Yu, Qipeng; Gao, Yilun; Wang, Hua; Wang, Chao; Zhang, Yinping; Li, Baohua; Zhu, Meifang; Mo, Jinhan; Xu, Guiyin; Li, Ju; ... Show more Show less
Thumbnail
DownloadAccepted version (2.378Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Airborne particulate matters (PM) pose serious health threats to the population, and efficient filtration is needed for indoor and vehicular environments. However, there is an intrinsic conflict between filtration efficiency, air resistance, and service life. In this study, a two-stage electrostatically assisted air (EAA) filtration device is designed and the efficiency-air resistance-filter life envelope is significantly improved by a thin coating of polydopamine (PDA) on the polyethylene terephthalate (PET) coarse filter by in situ dopamine polymerization. The 8 mm thick EAA PDA-140@PET filter has a high filtration efficiency of 99.48% for 0.3 µm particles, low air resistance of 9.5 Pa at a filtration velocity of 0.4 m s-1 , and steady performance up to 30 d. Compared with the bare PET filter, the penetration rate for 0.3 µm particles is lowered by 20×. The coated PDA is of submicron thickness, 10-3  × the gap distance between filter fibers, so low air resistance could be maintained. The filter shows steadily high filtration efficiency and an acceptable increase of air resistance and holds nearly as many particles as its own weight in a 30 day long-term test. The working mechanism of the EAA coarse filter is investigated, and the materials design criteria are proposed.
Date issued
2021-08
URI
https://hdl.handle.net/1721.1/135350
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering; Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Small
Publisher
Wiley

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.