MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Massive Access for Future Wireless Communication Systems

Author(s)
Wu, Yongpeng; Gao, Xiqi; Zhou, Shidong; Yang, Wei; Polyanskiy, Yury; Caire, Giuseppe; ... Show more Show less
Thumbnail
DownloadSubmitted version (243.6Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2002-2012 IEEE. Multiple access technology played an important role in wireless communication in the last decades: it increases the capacity of the channel and allows different users to access the system simultaneously. However, the conventional multiple access technology, as originally designed for current human-centric wireless networks, is not scalable for future machine-centric wireless networks. Massive access (studied in the literature under such names as "massive- device multiple access,""unsourced massive random access,""massive connectivity,""massive machine-type communication,"and "many-access channels") exhibits a clean break with current networks by potentially supporting millions of devices in each cellular network. The tremendous growth in the number of connected devices requires a fundamental rethinking of the conventional multiple access technologies in favor of new schemes suited for massive random access. Among the many new challenges arising in this setting, the most relevant are: the fundamental limits of communication from a massive number of bursty devices transmitting simultaneously with short packets, the design of low complexity and energy-efficient massive access coding and communication schemes, efficient methods for the detection of a relatively small number of active users among a large number of potential user devices with sporadic transmission pattern, and the integration of massive access with massive MIMO and other important wireless communication technologies. This article presents an overview of the concept of massive access wireless communication and of the contemporary research on this important topic.
Date issued
2020
URI
https://hdl.handle.net/1721.1/135385
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
IEEE Wireless Communications
Publisher
Institute of Electrical and Electronics Engineers (IEEE)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.