MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Data–Driven Disturbance Observers for Estimating External Forces on Soft Robots

Author(s)
Santina, Cosimo Della; Truby, Ryan Landon; Rus, Daniela
Thumbnail
DownloadPublished version (3.004Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
© 2016 IEEE. Unlike traditional robots, soft robots can intrinsically interact with their environment in a continuous, robust, and safe manner. These abilities - and the new opportunities they open - motivate the development of algorithms that provide reliable information on the nature of environmental interactions and, thereby, enable soft robots to reason on and properly react to external contact events. However, directly extracting such information with integrated sensors remains an arduous task that is further complicated by also needing to sense the soft robot's configuration. As an alternative to direct sensing, this paper addresses the challenge of estimating contact forces directly from the robot's posture. We propose a new technique that merges a nominal disturbance observer, a model-based component, with corrections learned from data. The result is an algorithm that is accurate yet sample efficient, and one that can reliably estimate external contact events with the environment. We prove the convergence of our proposed method analytically, and we demonstrate its performance with simulations and physical experiments.
Date issued
2020
URI
https://hdl.handle.net/1721.1/135409
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
IEEE Robotics and Automation Letters
Publisher
Institute of Electrical and Electronics Engineers (IEEE)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.