MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Texture and nanostructural engineering of conjugated conducting and semiconducting polymers

Author(s)
Heydari Gharahcheshmeh, M; Gleason, KK
Thumbnail
DownloadPublished version (8.612Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
© 2020 The Author(s) Conducting polymers have attracted tremendous attention because of their unique characteristics, such as metal-like conductivity, ionic conductivity, optical transparency, and mechanical flexibility. Texture and nanostructural engineering of conjugated conducting polymers provide an outstanding pathway to facilitate their adoption in a variety of technological applications, including energy storage and harvesting devices, flexible optoelectronic devices, and wearable electronic devices. Generally, obtaining high carrier mobility in the presence of high carrier density is challenging and requires precise control of the texture and nanostructure of conducting polymers to avoid the charge localization. Preferential semicrystalline orientation, π–π stacking distances, crystallite size, intra- and interchain couplings, intra- and intercrystallite connections, and grain boundaries are the key parameters that influence the charge carrier mobility and needs to be controlled by the synthesis parameters. This article provides a comprehensive overview of the recent texture and nanostructural engineering development of conducting polymers. In addition, this work describes the fundamental of charge carrier transport mechanisms in conducting polymers; and the latest progress on the optoelectronic characteristics of flexible transparent conductive electrodes based on conducting polymers is reported.
Date issued
2020
URI
https://hdl.handle.net/1721.1/135418
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Materials Today Advances
Publisher
Elsevier BV

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.