dc.contributor.author | Florence, Peter | |
dc.contributor.author | Manuelli, Lucas | |
dc.contributor.author | Tedrake, Russ | |
dc.date.accessioned | 2021-10-27T20:23:24Z | |
dc.date.available | 2021-10-27T20:23:24Z | |
dc.date.issued | 2020 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/135421 | |
dc.language.iso | en | |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | |
dc.relation.isversionof | 10.1109/LRA.2019.2956365 | |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.source | MIT web domain | |
dc.title | Self-Supervised Correspondence in Visuomotor Policy Learning | |
dc.type | Article | |
dc.contributor.department | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory | |
dc.relation.journal | IEEE Robotics and Automation Letters | |
dc.eprint.version | Author's final manuscript | |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
eprint.status | http://purl.org/eprint/status/PeerReviewed | |
dc.date.updated | 2021-01-27T18:25:07Z | |
dspace.orderedauthors | Florence, P; Manuelli, L; Tedrake, R | |
dspace.date.submission | 2021-01-27T18:25:13Z | |
mit.journal.volume | 5 | |
mit.journal.issue | 2 | |
mit.license | OPEN_ACCESS_POLICY | |
mit.metadata.status | Authority Work and Publication Information Needed | |